Runx1 and Runx2 cooperate during sternal morphogenesis.

نویسندگان

  • Ayako Kimura
  • Hiroyuki Inose
  • Fumiko Yano
  • Koji Fujita
  • Toshiyuki Ikeda
  • Shingo Sato
  • Makiko Iwasaki
  • Tetsuya Jinno
  • Keisuke Ae
  • Seiji Fukumoto
  • Yasuhiro Takeuchi
  • Hiroshi Itoh
  • Takeshi Imamura
  • Hiroshi Kawaguchi
  • Ung-il Chung
  • James F Martin
  • Sachiko Iseki
  • Ken-ichi Shinomiya
  • Shu Takeda
چکیده

Chondrocyte differentiation is strictly regulated by various transcription factors, including Runx2 and Runx3; however, the physiological role of Runx1 in chondrocyte differentiation remains unknown. To examine the role of Runx1, we generated mesenchymal-cell-specific and chondrocyte-specific Runx1-deficient mice [Prx1 Runx1(f/f) mice and alpha1(II) Runx1(f/f) mice, respectively] to circumvent the embryonic lethality of Runx1-deficient mice. We then mated these mice with Runx2 mutant mice to obtain mesenchymal-cell-specific or chondrocyte-specific Runx1; Runx2 double-mutant mice [Prx1 DKO mice and alpha1(II) DKO mice, respectively]. Prx1 Runx1(f/f) mice displayed a delay in sternal development and Prx1 DKO mice completely lacked a sternum. By contrast, alpha1(II) Runx1(f/f) mice and alpha1(II) DKO mice did not show any abnormal sternal morphogenesis or chondrocyte differentiation. Notably, Runx1, Runx2 and the Prx1-Cre transgene were co-expressed specifically in the sternum, which explains the observation that the abnormalities were limited to the sternum. Histologically, mesenchymal cells condensed normally in the prospective sternum of Prx1 DKO mice; however, commitment to the chondrocyte lineage, which follows mesenchymal condensation, was significantly impaired. In situ hybridization analyses demonstrated that the expression of alpha1(II) collagen (Col2a1 - Mouse Genome Informatics), Sox5 and Sox6 in the prospective sternum of Prx1 DKO mice was severely attenuated, whereas Sox9 expression was unchanged. Molecular analyses revealed that Runx1 and Runx2 induce the expression of Sox5 and Sox6, which leads to the induction of alpha1(II) collagen expression via the direct regulation of promoter activity. Collectively, these results show that Runx1 and Runx2 cooperatively regulate sternal morphogenesis and the commitment of mesenchymal cells to become chondrocytes through the induction of Sox5 and Sox6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of Runx1, -2 and -3 during tooth, palate and craniofacial bone development

We describe the expression of three Runt-related RUNX genes (previously termed AML, Cbfa, or Pebp2alpha) Runx1 and Runx3 during the development of teeth and other craniofacial tissues and compare them to Runx2 expression reported earlier. All three genes were expressed in mesenchymal condensates. Runx1 was expressed in several cartilage primordia earlier than Runx3, and Runx2 was intense in all...

متن کامل

Runx Expression in Normal and Osteoarthritic Cartilage: Possible Functions of Runx Proteins in Chondrocytes: A Dissertation

The Runx family of transcription factors supports cell fate determination, cell cycle regulation, global protein synthesis control, and genetic as well as epigenetic regulation of target genes. Runx1, which is essential for hematopoiesis; Runx2, which is required for osteoblast differentiation; and Runx3, which is involved in neurologic and gut development; are expressed in the growth plate dur...

متن کامل

Nuclear Organization in Breast Cancer: A Dissertation

The nuclear matrix (NM) is a fibrogranular network of ribonucleoproteins upon which transcriptional complexes and regulatory genomic sequences are organized. A hallmark of cancer is the disorganization of nuclear architecture; however, the extent to which the NM is involved in malignancy is not well studied. The RUNX1 and RUNX2 proteins form complexes within the NM to promote hematopoiesis and ...

متن کامل

Disease mutations in RUNX1 and RUNX2 create nonfunctional, dominant-negative, or hypomorphic alleles.

Monoallelic RUNX1 mutations cause familial platelet disorder with predisposition for acute myelogenous leukemia (FPD/AML). Sporadic mono- and biallelic mutations are found at high frequencies in AML M0, in radiation-associated and therapy-related myelodysplastic syndrome and AML, and in isolated cases of AML M2, M5a, M3 relapse, and chronic myelogenous leukemia in blast phase. Mutations in RUNX...

متن کامل

RUNX1 translocations in malignant hemopathies.

The RUNX gene family includes three evolutionarily conserved genes (RUNX1, RUNX2 and RUNX3) encoding transcription factors involved in cell lineage differentiation during development and various forms of cancer. The RUNX1 gene, located in chromosome 21q22, is crucial for the establishment of definite hematopoiesis and the generation of hematopoietic stem cells in the embryo. It contains a "Runt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 137 7  شماره 

صفحات  -

تاریخ انتشار 2010